Scientific journal
Bulletin of Higher Educational Institutions
North Caucasus region

TECHNICAL SCIENCES


UNIV. NEWS. NORTH-CAUCAS. REG. TECHNICAL SCIENCES SERIES. 2019; 3: 38-42

 

http://dx.doi.org/10.17213/0321-2653-2019-3-38-42

 

GCMS-BASED METHODOLOGY FOR DETERMINING THE COMPOSITION OF LIQUID FISCHER-TROPSCH SYNTHESIS PRODUCTS

A.N. Sokolov, V.N. Soromotin, R.E. Jakovenko, A.P. Savost’yanov

Sokolov Andrey Nikolaevich – Candidate of Chemical Sciences, Senior Researcher, Research Institute «Nanotechnology and New Materials», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: sokolov_1983@mail.ru

Soromotin Vitaliy Nikolaevich, – Postgraduate Student, Department «Chemical Technologies», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: kilativ90@yandex.ua

Jakovenko Roman Evgen’evich – Candidate of Technical Sciences, Senior Researcher, Research Institute «Nanotechnology and New Materials», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: jakovenko39@gmail.com

Savost’yanov Alexander Petrovich – Doctor of Chemical Sciences, professor, department «Chemical Technologies», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. E-mail: savostap@mail.ru

 

 

Abstract

A methodology for determining the composition of liquid Fischer-Tropsch synthesis products based on gas chromatography / mass spectrometry is proposed. The method is based on the calculation of the integral mass spectra of the components and allows to determine the ratio of hydrocarbons in their incomplete chromatographic separation. A computer program that implements the described method and automatically processes chromatographic data has been developed.

 

Keywords: Fischer-Tropsch synthesis; gas chromatography; composite catalyst; mass spectrometry; synthetic hydrocar-bons; motor fuels.

 

Full text: [in elibrary.ru]

 

References

  1. David A., Wood A., Chikezie N. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas // J. Nat. Gas Sci. Eng. 2012. Vol. 9. P. 196.
  2. Khodakov A.Y., Chu W., Fongarland P. Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels // Chem. Rev. 2007. Vol. 107. P. 1692.
  3. Eliseev O.L., Savost’yanov A.P., Sulima S.I., Lapidus A.L. Recent development in heavy paraffin synthesis from CO and H2 // Mendeleev Commun. 2018. 28. 345 – 351.
  4. Savost'yanov A.P., Yakovenko R.E., Narochnyi G.B., Saliev A.N., Zubkov I.N., Mitchenko S.A. Pererabotka uglei i prirodnykh organicheskikh veshchestv v sinteticheskie uglevodorody. Chast' 5. Kompozitnyi katalizator dlya polucheniya motornykh topliv iz SO i Н2 po metodu Fishera-Tropsha [Processing of coal and natural organic substances in synthetic hydrocarbons. Part 5. Composite catalyst to produce motor fuels via Fischer-Tropsch protocol from CO and H2]. Izv. vuzov. Sev.-Kavk. region. Tekhn. nauki, 2016, no. 3, pp. 92 – 99. (In Russ.)
  5. Savost’yanov A.P., Yakovenko R.E., Sulima S.I., Bakun V.G., Narochnyi G.B., Chernyshev V.M., Mitchenko S.A. The impact of Al2O3 promoter on an efficiency of C5+ hydrocarbons formation over Co/SiO2 catalysts via Fischer-Tropsch synthesis // Catalysis Today. 2017. 279. 107 – 114.
  6. Savost’yanov A.P., Yakovenko R.E., Narochnyi G.B., Sulima S.I., Bakun V.G., Soromotin V.N., Mitchenko S.A. Unexpected increase in C5+ selectivity at temperature rise in high pressure Fischer-Tropsch synthesis over Co-Al2O3/SiO2 catalyst // Catalysis Communications. 2017.
    99. 25 – 29.
  7. Seomoon K. On-line GC and GC–MS analyses of the Fischer–Tropsch products synthesized using ferrihydrite catalyst // Journal of Industrial and Engineering Chemistry. 2013. 19. 2108 – 2114.
  8. Kasht A., Hussain R., Ghouri M., Blank J., Elbashir N.O. Product Analysis of Supercritical Fischer-Tropsch Synthesis: Utilizing a Unique On-Line and Off-Line Gas Chromatographs Setup in a Bench-Scale Reactor Unit // American Journal of Analytical Chemistry. 2015. 6. 659 – 676.
  9. Narochnyi G.B., Yakovenko R.E., Savost’yanov A.P., Bakun V.G. Experience in Introducing a Cobalt Catalyst Technology for the Synthesis of Hydrocarbons from CO and H2 // Catalysis in Industry. 2016. 8. 139 – 144.
  10. Biller J.E., K. Biemann Reconstructed Mass Spectra, A Novel Approach for the Utilization of Gas Chromatograph - Mass Spectrometer Data // Analytical Letters. 1974. 7. 515 – 528.
  11. Hargrove W.F., Rosenthal D., Cooley P.C. Improvement of Algorithm for Peak Detection in Automatic Gas Chromatography-Mass Spectrometry Data Processing // Anal. Chem. 1981. 53. 538 – 539.
  12. Pool W.G., Leeuw J.W., Graaf B. Automated Extraction of Pure Mass Spectra from Gas Chromatographic/Mass Spectrometric Data // Journal of Mass Spectrometry. 1997. 32. 438 – 443.
  13. AMDIS // http://www.amdis.net/ National Institute of Standards and Technology (NIST), U.S. Department of Commerce.
  14. Qt – Cross-platform software development for embedded & desktop // https://www.qt.io.