Scientific journal
Bulletin of Higher Educational Institutions
North Caucasus region

TECHNICAL SCIENCES


UNIV. NEWS. NORTH-CAUCAS. REG. TECHNICAL SCIENCES SERIES. 2022; 1: 43-53

 

http://dx.doi.org/10.17213/1560-3644-2022-1-43-53

 

SYNTHESIS OF HIGHER ALCOHOLS FROM CO AND H2 ON BI- AND POLYMETALLIC CATALYSTS

Zubkov I.N., Papeta O.P., Bozhenko E.A., Demchenko S.S., Drachenko A.S., Lavrenov S.A., Yakovenko R.E.

Zubkov Ivan N. – Junior Researcher, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials».

Papeta Ol'ga P. Research-Engineer, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials».

Bozhenko Ekaterina A. – Technician, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials».

Demchenko Svetlana S. – Technician, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials».

Drachenko Andrey S. – Laboratory Assistant, Research Institute «Nanotechnology and New Materials».

Lavrenov Sergey A. – Technician, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials».

Yakovenko Roman E. – Candidate Technical Sciences, Senior Research, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials».

 

Abstract

In this work, bi- and polymetallic cobalt catalysts were obtained by impregnation for the catalytic conversion of synthesis gas into higher alcohols. The catalysts were characterized by XRD, IR spectroscopy, CO-TPD, H2-TPR, TGA, SEM and tested in CO and H2 conversion reactions in continuous mode for 20–80 h in a flow reactor with a fixed catalyst bed at a pressure of 5,0 MPa, volumetric gas velocity 1000 h-1 and temperature 225–250 °C. It has been determined that joint impregnation with solutions of cobalt, aluminum, copper and zinc of the carrier (SiO2) makes it possible to obtain 15,5 wt. oxygenates in the composition of the synthesis products. It has been shown that, regardless of the method of introducing and the amount of copper into the composition of the catalyst, there is a decrease in CO conversion, selectivity and productivity for target products, and an increase in the rate of catalyst deactivation.

 

Keywords: Fischer–Tropsch synthesis, bimetallic catalysts, oxygenates, higher alcohols

 

Full text: [in elibrary.ru]

 

References

  1. Luk H.T., Mondelli C., Ferré D.C., Stewart J.A., Pérez-Ramírez J. Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews. 2017; (46): 1358-1426.
  2. Ao M., Pham G.H., Sunarso J., Tade M.O., Liu S. Active centers of catalysts for higher alcohol synthesis from syngas: a review. ACS Catalysis. 2018; (8): 7025-7050.
  3. Erdiwansyah, Mamat R., Sani M.S.M., Sudhakar K., Kadarohman A., Sardjono R.E. An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports. 2019; (5): 467-479.
  4. Kuhz H., Kuenz A., Prüße U., Willke T., Vorlop K. D. Products Components: Alcohols. Biorefineries. 2017; 339-372.
  5. Sheerin E., Reddy G.K., Smirniotis P. Evaluation of Rh/CexTi1-xO2 Catalysts for Synthesis of Oxygenates from Syngas using XPS and TPR Techniques. Catalysis Today. 2016; (263): 75-83.
  6. Zaman S., Smith K.J. A Review of Molybdenum Catalysts for Synthesis Gas Conversion to Alcohols: Catalysts, Mechanisms and Kinetics. Catalysis Reviews. 2012; (54): 41-132.
  7. Zaman S.F., Pasupulety N., Al-Zahrani A.A., Daous M.A., Al-Shahrani S.S., Driss H., Petrov L.A., Smith K.J. Carbon Monoxide Hydrogenation on Potassium Promoted Mo2N Catalysts. Applied Catalysis A: General. 2017; (532): 133-145.
  8. Heracleous E., Liakakou E.T., Lappas A.A., Lemonidou A.A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols. Applied Catalysis A: General. 2013; (455): 145-154.
  9. Pei Y., Liu J., Zhao Y., Ding Y., Liu T., Dong W., Zhu H., Su H., Yan L., Li J., Li W.X. High Alcohols Synthesis via Fischer-Tropsch Reaction at Cobalt Metal/Carbide Interface. ACS Catalysis. 2015; (5): 3620-3624.
  10. Ishida T., Yanagihara T., Liu X., Ohashi H., Hamasaki A., Honma T., Oji H., Yokoyama T., Tokunaga M. Synthesis of Higher Alcohols by Fischer-Tropsch Synthesis over Alkali Metal-Modified Cobalt Catalysts. Applied Catalysis A: General. 2013; (458): 145-154.
  11. Zhang X., Li Z., Guo Q., Zheng H., Xie K. Selective Synthesis of Mixed Alcohols from Syngas over Catalyst Fe2O3/Al2O3 in Slurry Reactor. Fuel Processing Technology. 2010; (91): 379-382.
  12. Kiai R.M., Nematian T., Tavasoli A., Karimi A. Effect of Elementalmolar Ratio on the Synthesis of Higher Alcohols over Co-Promoted Alkali-Modified Mo2C Catalysts Supported on CNTs. Journal of Energy Chemistry. 2015; (24): 278-274.
  13. Liakakou E.T., Heracleous E., Triantafyllidis K.S.; Lemonidou A.A. K-Promoted NiMo Catalysts Supported on Activated Carbon for the Hydrogenation Reaction of CO to Higher Alcohols: Effect of Support and Active Metal. Applied Catalysis B: Environmental. 2015; (165): 296-305.
  14. Wang N., Hu R., Li J., Bai F., Zhang Y., Su H., Gu X. Insight into the Promotion Mechanism of K and Ni in Sulfide Molybdenum-Based Catalysts for Higher Alcohols Synthesis from Syngas. Catalysis Communications. 2017; (91): 57-61.
  15. Savost'yanov A. P., Yakovenko R.E., Narochnyi G.B., Sulima S.I., Bakun V.G., Soromotin V.N., Mitchenko S.A. Unexpected increase in C5+ selectivity at temperature rise in high pressure Fischer-Tropsch synthesis over Co-Al2O3/SiO2 catalyst. Catalysis Communications. 2017; (99): 25-29.
  16. Savost'yanov A.P., Narochnyi G.B., Yakovenko R.E., Mitchenko S.A., Zubkov I.N. Enhancement of the Fischer-Tropsch process for producing long-chain hydrocarbons on a cobalt-alumina-silica gel catalyst. Petroleum Chemistry. 2018; (58): 81-89.
  17. Narochnyi G.B., Yakovenko R.E., Savost’yanov A.P., Bakun V.G. Experience in introducing a cobalt catalyst technology for the synthesis of hydrocarbons from CO and H2. Catalysis in Industry. 2016; (8): 139-144.
  18. Savost’yanov A.P., Yakovenko R.E., Sulima S.I., Bakun V.G., Narochnyi G.B., Chernyshev V.M., Mitchenko S.A. The impact of Al2O3 promoter on an efficiency of C5+ hydrocarbons formation over Co/SiO2 catalysts via Fischer-Tropsch synthesis. Catalysis Today. 2017;(279): 107-114.
  19. Savost'yanov A.P., Yakovenko R.E., Narochnyi G.B., Bakun V.G., Sulima S.I., Yakuba E.S., Mitchenko S.A. Industrial catalyst for the selective Fischer-Tropsch synthesis of long-chain hydrocarbons. Kinetics and Catalysis. 2017; (58): 81-97.
  20. Yakovenko R.E., Savost'yanov A.P., Narochniy G.B., Soromotin V.N., Zubkov I.N., Papeta O.P., Svetogorov R.D., Mitchenko S.A. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer-Tropsch synthesis combined with hydroprocessing. Catalysis Science and Technology. 2020; (10): 7613-7629.
  21. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD), PDF-2 Release 2012, web site: www.icdd.com (2014)
  22. Varghese S., Cutrufello M.G., Rombi E., Monaci R., Cannas C., Ferino I. Mesoporous hard-templated Me-Co [Me = Cu, Fe] spinel oxides for water gas shift reaction. Journal of Porous Materials. 2014; (21): 539-549.
  23. Lenglet M., Terrier L., Chartier P., Koenig J.F., Nkeng P., Poillerat G. Initial stages of cobalt oxidation by FTIR spectroscopy. Journal of Physics. 1993; (3): 477-483.
  24. Saniger J.M. Al-О infrared vibrational frequencies of γ-alumina. Materials Letters. 1995; (22): 109-113.
  25. Boldyrev A.N. Infrared spectra of minerals. Moscow: Nedra; 1976. 198 p.
  26. Plaksin I.N., Solnyshkin V.I. Infrared spectroscopy of surface layers of reagents and minerals. Moscow: Nauka; 1966. Pp. 54-55.
  27. Nakamoto K. Infrared spectra of inorganic and coordination compounds. Moscow: Mir; 1966. 411 p.
  28. Fischer N., Steen E., Claeys M. Structure sensitivity of the Fischer-Tropsch activity and selectivity on alumina supported cobalt catalysts. Journal of Catalysis. 2013; (299): 67-80.
  29. Lapidus A.L., Krylova A.Yu., Mikhailova Ya.V., Sineva L.V., Erofeev A.B. Effect of the nature of the support of a cobalt catalyst on the synthesis of hydrocarbons from CO, H2, and C2H4. Solid Fuel Chemistry. 2011; 45 (2): 71-80.
  30. Jung J.S., Lee J.S., Choi G., Ramesh S., Moon D.J. The characterization of micro-structure of cobalt on γ-Al2O3 for FTS: Effects of pretreatment on Ru-Co/γ-Al2O3. Fuel. 2015; (149): 118-129.
  31. Loktev S.M., Klimenko V.L., Kamzolkin V.V., Menyaylo A.T., Rudkovskiy D.M., Mushenko D.V., Vasil'yev I.A., Lyubomilov V.I., Kutsenko A.I., Potarin M.M. Higher fatty alcohols (applications, production methods, physico-chemical properties). Moscow: Khimiya; 1970. 328 p.