Scientific journal
Bulletin of Higher Educational Institutions
North Caucasus region

TECHNICAL SCIENCES


UNIV. NEWS. NORTH-CAUCAS. REG. TECHNICAL SCIENCES SERIES. 2022; 2: 47-55

 

http://dx.doi.org/10.17213/1560-3644-2022-2-47-55

 

TECHNOLOGICAL SOLUTIONS FOR THE ELECTROCHEMICAL SYNTHESIS OF CARBONYL COMPOUNDS FROM ALCOHOLS

E.N. Shubina, V.P. Kashparova, V.I. Mishurov, I.Yu. Zhukova

Shubina Elena N. – Senior Lecturer, Department «Chemical Technologies of the Oil and Gas Complex», elenapapina1995@mail.ru

Kashparova Vera P. – Candidate of Technical Sciences, Associate Professor, Department «Chemical Technologies», kashparova2013@mail.ru

Mishurov Vladimir I. – Candidate of Chemical Sciences, Associate Professor, Department «Chemical Technologies of the Oil and Gas Complex», vimishurov@gmail.com

Zhukova Irina Yu.Doctor of Technical Sciences, Professor, Department «Chemical Technologies of the Oil and Gas Complex»,  iyuzh@mail.ru

 

Abstract

The method of indirect electrochemical oxidation of alcohols to carbonyl compounds using a two-mediator catalytic system nitroxide radical of the TEMPO series/potassium iodide in a two-phase dichloromethane/aqueous solution of NaHCO3 was improved. For the effective implementation of the synthesis and in order to adapt the developed method for the oxidation of alcohols to the conditions of small-tonnage serial production, technological solutions were proposed to accelerate the oxidation process and reduce material and energy costs: a promoting additive - pyridine, a diaphragmless electrolyzer, affordable and cheap electrode materials - glassy carbon and nickel. The synthetic potential of the developed method made it possible to convert alcohols of different classes into the corresponding carbonyl compounds with a high yield in terms of substance (80–100 %) and current (70–90 %).

 

Keywords: alcohols, carbonyl compounds, pyridine, non-diaphragm electrolyzer, electrode materials

 

Full text: [in elibrary.ru]

 

References

  1. Reuss G., Disteldorf W., Gamer A.O., Hilt A. «Formaldehyde» in ullmann's encyclopedia of industrial chemistry. 2005. P. 735–768.
  2. Kohlpaintner, C., Schulte, M., Falbe, J., Lappe, P., Weber, J., Frey, G. Aldehydes, Aliphatic. Ullmann’s Encycl. Ind Chem. 1–31 – 2013.
  3. Nutting J.E., Rafiee M., Stahl S.S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chemical Reviews. 2018; 118(9): 4834-4885.
  4. Ciriminna R., Pandarus, V., Beland, F., Xu, Y. J., Pagliaro, M. Heterogeneously catalyzed alcohol oxidation for the fine chemical industry. Organic Process Research & Development. 2015; 19(11):1554-1558.
  5. Ciriminna R., Pagliaro M. Industrial oxidations with organocatalyst TEMPO and its derivative. Organic Process Research & Development. 2009; 14(1):245-251.
  6. Anelli P.L., Banfi, S., Montanari, F., Quici, S. Oxidation of diols with alkali hypochlorites catalyzed by oxammonium salts under two-phase conditions. J. Org. Chem. 1989; 54(12):2970-2972.
  7. Ciriminna R., Pagliaro M., Luque R. Heterogeneous catalysis under flow for the 21st century fine chemical industry. Green Energy & Environment. 2021; 6(2):161-166.
  8. Sonkar P.K., Ganesan V., Rao V. Electrocatalytic Oxidation and Determination of Cysteine at Oxovanadium(IV) Salen Coated Electrodes. Int. J. Electrochemistry. 2014. P. 1-6.
  9.  Krasutsky P.A. Birch bark research and development. Natural product reports. 2006;23(6): 919-942.
  10. Krasutsky P.A., Rudnitskava A., Khotkevych A.B. Electrochemical Method for the Production of Betulin Aldehyde: Google Patents 11910134 USA. – 2008.
  11. Ciriminna R., Palmisano G., Pagliaro M. Electrodes Functionalized with the 2,2,6,6-Tetramethylpiperidinyloxy Radical for the Waste-Free Oxidation of Alcohols. ChemCatChem. 2015; 7(4):552-558.
  12. Kashparova V.P., Klushin V.A., Zhukova I.Yu., Kashparov I.S., Leontyeva D.V., Il’chibaeva I.B., Smirnova N.V., Kagan E.Sh., Chernyshev V.M. TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodine. Tetrahedron Letters. 2017; (58):3517-3521.
  13. Mercadant M.A., Christopher B.K., Bobbitt J. M., Tilley L.J., Leadbeater N. E. Synthesis of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate and 4-acetamido-(2,2,6,6- tetramethyl-piperidin-1-yl)oxyl and their use in oxidative reactions. Nature Protocols. 2013; 8(4): 666-676.
  14. Kagan, E.S. Kashparova, V.P., Zhukova, I.Yu., Kashparov I.I. Oxidation of alcohols by iodine in the presence of nitroxyl radicals generated electrochemically. Russian Journal of Applied Chemistry. 2010; 83(4):693-695. (In Russ.).
  15. Bobbitt J. M., Bartelson A.L., Bailey W.F., Hamlin T.A., Kelly C.B. Oxoammonium Salt Oxidations of Alcohols in the Presence of Pyridine Bases. J. Org. Chem. 2014; (79):1055.
  16. Shono T., Matsumura, Y., Hayashi, J., Mizoguchi, M. Electrochemical oxidation of alcohols using iodonium ion as an electron carrier. Tetrahedron Letters. 1979; 20(2):165-168.
  17. Sheldon R.A. Recent advances in green catalytic oxidations of alcohols in aqueous media. Catalysis Today. 2015; (247):4-13.
  18. Bailey W.F., Bobbitt J.M., Wiberg K.B. Mechanism of the oxidation of alcohols by oxoammonium cations.  J. Org. Chem. 2007; 72(12):4504-4509.
  19. Tarasevich M.R., Korchagin O.V. Electrocatalysis and pH (review). Electrochemistry. 2013; 49(7): 676. (In Russ.).
  20. Turygin V.V., Tomilov A.P. Possible directions of development of applied electrochemical synthesis of organic compounds (review). Electrochemistry. 2015; 51(11):1132. (In Russ.).