Scientific journal
Bulletin of Higher Educational Institutions
North Caucasus region

TECHNICAL SCIENCES


UNIV. NEWS. NORTH-CAUCAS. REG. TECHNICAL SCIENCES SERIES. 2022; 4: 96-101

 

http://dx.doi.org/10.17213/1560-3644-2022-4-96-101

 

SELECTION OF SPECIES AND CONCENTRATIONS OF ZINC-PHOSPHORUS-ORGANIC INHIBITORS OF ATMOSPHERIC CORROSION FOR PRESERVATION OF LOW CARBON STEELS

D.V. Sokolov, E.S. Pasenko, I.D. Ostaniy, D.A. Rukavitsyn, T.V. Lipkina

Sokolov Denis V. – Student, Department «Chemical Technology», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia.

Pasenko Evgeny S. – Student, Department «Chemical Technology», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia.

Ostanyi Ilya D. – Student, Department «Chemical Technology», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia.

Rukavitsyn Dmitriy A. Applicant, Department «Chemical Technologies», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia,  dar250774@yandex.ru

Lipkina Tatiana V. Candidate of Technical Sciences, Associate Professor, Department «Chemical Technology», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia, lipkina-t@mail.ru

 

 

Abstract

The purpose of the work was to investigate the effectiveness of zinc-phosphorus-organic inhibitors during metal storage using gravimetric, visual and electrochemical methods. It was established by the conducted research that inhibitor EKTOKAIL-800-1 causes passivation of steel in model solution which is expressed the stronger the higher concentration of inhibitor and is a cathode inhibitor. OPTION-313-1 inhibitor is a mixed type inhibitor that increases overstressing of the anodic process and simultaneously overstressing of hydrogen in the model solution. Under atmospheric corrosion conditions the cathodic inhibitor EKTOKAIL-800-1 is more effective, providing 30.4% protective action coefficient, on the basis of which it can be recommended for steel preservation during storage in atmospheric conditions.

 

Keywords: inhibitor, atmospheric corrosion, composite electrodes, steel structures, corrosive environment, polarisation measurements, protective action factor

 

Full text: [in elibrary.ru]

 

References

  1. IMPACT - Study on "International Measures for the Prevention, Application and Economics of Corrosion Technology". NACE International. 2016.
  2. Kirchgeorg T. et al. Emissions from Corrosion Protection Systems of Offshore Wind Farms: Assessment of Potential Impacts on the Marine Environment. Mar. Pollut. Bull. 2018.(136):257-268. DOI:10.1016/j.marpolbul.2018.08.058.
  3. Wallinder I.O., Bertling S., Kleja D.B., Leygraf C. Corrosion-induced Release and Interaction of Chromium, Nickel and Iron from Stainless Steel with the Environment . Water Air Soil Pollut. 2006. 170 (1-4):17-35. DOI:10.1007/s11270-006-2238-5
  4. Oldfield J.W., Todd B. Environmental Aspects of Corrosion in MSF and RO Desalination Plants, Desalination.1997. 108(1-3):27-36. DOI: 10.1016/S0011-9164(97)00005-2.
  5. Mandke J.S. Corrosion Causes Most Pipeline Failures in the Gulf of Mexico. Oil Gas J.1990. 88 (44):40-44.
  6. Sadeghi Meresht E., Shahrabi Farahani T., Neshati J. Failure Analysis of Stress Corrosion Cracking Occurred in a Gas Transmission Steel Pipe-line. Eng. Fail. Anal.2011. 18(3):963-970. DOI:10.1016/j. eng-failanal.2010.11.014
  7. Panteleeva M. Effective Modern Methods of Corrosion Protection of Metal Road Structures. 2017. IOP Conf. Ser. Earth Environ. Sci. 90 (1):012119. DOI:10.1088/1755-1315/90/1/012119.
  8. Wang J.H., Wei F.I., Chang Y.S., Shih H.C. The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres. 1997. Mater. Chem. Phys. 47 (1):1-8. DOI:10.1016/S0254-0584(97)ECTOSCALE-800-119-3.
  9. Wu H., Le H.i, Chen Y.F., Qiao J. Comparison on Corrosion Behaviour and Mechanical Properties of Structural Steel Exposed between Urban Industrial Atmosphere and Laboratory Simulated Environment.2019. Constr. Build. Mater. (211):228-243. DOI:10.1016/j.conbuildmat.2019.03.207.
  10. 10. Pan C., Guo M., Han W., Wang Z., Wang C. Study of Corrosion Evolution of Carbon Steel Exposed to an Industrial Atmosphere. 2019. Eng. Sci. Technol. 54 (3):241-248. DOI: 10.1080/1478422X.2019.1574955.
  11. Montemor M. F. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. 2014. Surf. Coat. Technol. (258):17-37. DOI:10.1016/j.surfcoat.2014.06.031.
  12. Kuznetsov Yu.I. The Role of Solution Anions in Aluminum Depassivation and Corrosion Inhibition. Defence of Metals. 1984; 20(3): 359–372.
  13. Kuznetsov Yu.I., Isaev V.A., Starobinskaya I. V., Bardasheva T.I. IAСHFT-36 – an Effective Inhibitor of Metal Corrosion in Aqueous Media. Defence of Metals. 1990. 26(6): 965–969.
  14. Kuznetsov Yu.I., Isaev V.A., Trunov E.A. Protecting Mild Steel with Zinc Phosphonates. Defence of Metals. 1990. 26(5):798–804.
  15. Balaban-Irmenin Yu. V., Lipovskikh V. M., Rubashov A. M. Protection Against Internal Corrosion of Pipelines of Water Heat Networks. Moscow: Energoatomizdat; 1999. 248 p.
  16. Kovalchuk A.P. Composition for Inhibiting Salt Deposits and Corrosion and the Method of their Preparation. Patent RF, no. 2205157. 2003.